
asynqp Documentation
Release 0.4

Benjamin Hodgson

June 30, 2015

Contents

1 Example 3

2 Installation 5

3 Table of contents 7
3.1 Reference guide . 7
3.2 Examples . 14
3.3 AMQP Procotol Support . 18
3.4 Protocol extensions . 19

Python Module Index 21

i

ii

asynqp Documentation, Release 0.4

An AMQP (aka RabbitMQ) client library for asyncio.

Contents 1

http://www.rabbitmq.com/
http://docs.python.org/3/library/asyncio.html#module-asyncio

asynqp Documentation, Release 0.4

2 Contents

CHAPTER 1

Example

import asyncio
import asynqp

@asyncio.coroutine
def hello_world():

"""
Sends a 'hello world' message and then reads it from the queue.
"""
connect to the RabbitMQ broker
connection = yield from asynqp.connect('localhost', 5672, username='guest', password='guest')

Open a communications channel
channel = yield from connection.open_channel()

Create a queue and an exchange on the broker
exchange = yield from channel.declare_exchange('test.exchange', 'direct')
queue = yield from channel.declare_queue('test.queue')

Bind the queue to the exchange, so the queue will get messages published to the exchange
yield from queue.bind(exchange, 'routing.key')

If you pass in a dict it will be automatically converted to JSON
msg = asynqp.Message({'hello': 'world'})
exchange.publish(msg, 'routing.key')

Synchronously get a message from the queue
received_message = yield from queue.get()
print(received_message.json()) # get JSON from incoming messages easily

Acknowledge a delivered message
received_message.ack()

yield from channel.close()
yield from connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(hello_world())

3

asynqp Documentation, Release 0.4

4 Chapter 1. Example

CHAPTER 2

Installation

asynqp has no dependencies outside of the standard library. To install the package:

pip install asynqp

5

asynqp Documentation, Release 0.4

6 Chapter 2. Installation

CHAPTER 3

Table of contents

3.1 Reference guide

3.1.1 Connecting to the AMQP broker

asynqp.connect(host=’localhost’, port=5672, username=’guest’, password=’guest’, virtual_host=’/’, *,
loop=None, sock=None, **kwargs)

Connect to an AMQP server on the given host and port.

Log in to the given virtual host using the supplied credentials. This function is a coroutine.

Parameters

• host (str) – the host server to connect to.

• port (int) – the port which the AMQP server is listening on.

• username (str) – the username to authenticate with.

• password (str) – the password to authenticate with.

• virtual_host (str) – the AMQP virtual host to connect to.

• loop (BaseEventLoop) – An instance of BaseEventLoop to use. (Defaults to
asyncio.get_event_loop)

• sock (socket) – A socket instance to use for the connection. This is passed on to
loop.create_connection(). If sock is supplied then host and port will be
ignored.

Further keyword arguments are passed on to loop.create_connection().

Returns the Connection object.

asynqp.connect_and_open_channel(host=’localhost’, port=5672, username=’guest’, pass-
word=’guest’, virtual_host=’/’, *, loop=None, **kwargs)

Connect to an AMQP server and open a channel on the connection. This function is a coroutine.

Parameters of this function are the same as connect.

Returns a tuple of (connection, channel).

Equivalent to:

connection = yield from connect(host, port, username, password, virtual_host, loop=loop, **kwargs)
channel = yield from connection.open_channel()
return connection, channel

7

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop
http://docs.python.org/3/library/asyncio-eventloops.html#asyncio.get_event_loop
http://docs.python.org/3/library/socket.html#module-socket
http://docs.python.org/3/library/socket.html#socket.socket
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-task.html#coroutine

asynqp Documentation, Release 0.4

3.1.2 Managing Connections and Channels

Connections

class asynqp.Connection
Manage connections to AMQP brokers.

A Connection is a long-lasting mode of communication with a remote server. Each connection occupies a
single TCP connection, and may carry multiple Channels. A connection communicates with a single virtual
host on the server; virtual hosts are sandboxed and may not communicate with one another.

Applications are advised to use one connection for each AMQP peer it needs to communicate with; if you need
to perform multiple concurrent tasks you should open multiple channels.

Connections are created using asynqp.connect().

closed
a Future which is done when the handshake to close the connection has finished

transport
The BaseTransport over which the connection is communicating with the server

protocol
The Protocol which is paired with the transport

open_channel()
Open a new channel on this connection.

This method is a coroutine.

Returns The new Channel object.

close()
Close the connection by handshaking with the server.

This method is a coroutine.

Channels

class asynqp.Channel
Manage AMQP Channels.

A Channel is a ‘virtual connection’ over which messages are sent and received. Several independent channels
can be multiplexed over the same Connection, so peers can perform several tasks concurrently while using a
single socket.

Channels are created using Connection.open_channel().

declare_exchange(name, type, *, durable=True, auto_delete=False, internal=False, argu-
ments=None)

Declare an Exchange on the broker. If the exchange does not exist, it will be created.

This method is a coroutine.

Parameters

• name (str) – the name of the exchange.

• type (str) – the type of the exchange (usually one of ’fanout’, ’direct’,
’topic’, or ’headers’)

• durable (bool) – If true, the exchange will be re-created when the server restarts.

8 Chapter 3. Table of contents

http://docs.python.org/3/library/asyncio-task.html#asyncio.Future
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bool

asynqp Documentation, Release 0.4

• auto_delete (bool) – If true, the exchange will be deleted when the last queue is un-
bound from it.

• internal (bool) – If true, the exchange cannot be published to directly; it can only be
bound to other exchanges.

• arguments (dict) – Table of optional parameters for extensions to the AMQP protocol.
See Protocol extensions.

Returns the new Exchange object.

declare_queue(name=’‘, *, durable=True, exclusive=False, auto_delete=False, arguments=None)
Declare a queue on the broker. If the queue does not exist, it will be created.

This method is a coroutine.

Parameters

• name (str) – the name of the queue. Supplying a name of ‘’ will create a queue with a
unique name of the server’s choosing.

• durable (bool) – If true, the queue will be re-created when the server restarts.

• exclusive (bool) – If true, the queue can only be accessed by the current connection,
and will be deleted when the connection is closed.

• auto_delete (bool) – If true, the queue will be deleted when the last consumer is
cancelled. If there were never any conusmers, the queue won’t be deleted.

• arguments (dict) – Table of optional parameters for extensions to the AMQP protocol.
See Protocol extensions.

Returns The new Queue object.

close()
Close the channel by handshaking with the server.

This method is a coroutine.

set_qos(prefetch_size=0, prefetch_count=0, apply_globally=False)
Specify quality of service by requesting that messages be pre-fetched from the server. Pre-fetching means
that the server will deliver messages to the client while the client is still processing unacknowledged
messages.

This method is a coroutine.

Parameters

• prefetch_size (int) – Specifies a prefetch window in bytes. Messages smaller than
this will be sent from the server in advance. This value may be set to 0, which means “no
specific limit”.

• prefetch_count (int) – Specifies a prefetch window in terms of whole messages.

• apply_globally (bool) – If true, apply these QoS settings on a global level. The
meaning of this is implementation-dependent. From the RabbitMQ documentation:

RabbitMQ has reinterpreted this field. The original specification said: “By default
the QoS settings apply to the current channel only. If this field is set, they are applied
to the entire connection.” Instead, RabbitMQ takes global=false to mean that the
QoS settings should apply per-consumer (for new consumers on the channel; existing
ones being unaffected) and global=true to mean that the QoS settings should apply
per-channel.

3.1. Reference guide 9

http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#bool
https://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.qos.global

asynqp Documentation, Release 0.4

set_return_handler(handler)
Set handler as the callback function for undeliverable messages that were returned by the server.

By default, an exception is raised, which will be handled by the event loop’s exception handler (see
BaseEventLoop.set_exception_handler). If handler is None, this default behaviour is set.

Parameters handler (callable) – A function to be called when a message is returned. The
callback will be passed the undelivered message.

3.1.3 Sending and receiving messages with Queues and Exchanges

Queues

class asynqp.Queue
Manage AMQP Queues and consume messages.

A queue is a collection of messages, to which new messages can be delivered via an Exchange, and from
which messages can be consumed by an application.

Queues are created using Channel.declare_queue().

name
the name of the queue

durable
if True, the queue will be re-created when the broker restarts

exclusive
if True, the queue is only accessible over one channel

auto_delete
if True, the queue will be deleted when its last consumer is removed

arguments
A dictionary of the extra arguments that were used to declare the queue.

bind(exchange, routing_key, *, arguments=None)
Bind a queue to an exchange, with the supplied routing key.

This action ‘subscribes’ the queue to the routing key; the precise meaning of this varies with the exchange
type.

This method is a coroutine.

Parameters

• exchange (asynqp.Exchange) – the Exchange to bind to

• routing_key (str) – the routing key under which to bind

• arguments (dict) – Table of optional parameters for extensions to the AMQP protocol.
See Protocol extensions.

Returns The new QueueBinding object

consume(callback, *, no_local=False, no_ack=False, exclusive=False, arguments=None)
Start a consumer on the queue. Messages will be delivered asynchronously to the consumer. The callback
function will be called whenever a new message arrives on the queue.

This method is a coroutine.

Parameters

10 Chapter 3. Table of contents

http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.set_exception_handler
http://docs.python.org/3/library/functions.html#callable
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/asyncio-task.html#coroutine

asynqp Documentation, Release 0.4

• callback (callable) – a callback to be called when a message is delivered. The callback
must accept a single argument (an instance of IncomingMessage).

• no_local (bool) – If true, the server will not deliver messages that were published by
this connection.

• no_ack (bool) – If true, messages delivered to the consumer don’t require acknowledge-
ment.

• exclusive (bool) – If true, only this consumer can access the queue.

• arguments (dict) – Table of optional parameters for extensions to the AMQP protocol.
See Protocol extensions.

Returns The newly created Consumer object.

get(*, no_ack=False)
Synchronously get a message from the queue.

This method is a coroutine.

Parameters no_ack (bool) – if true, the broker does not require acknowledgement of receipt
of the message.

Returns an IncomingMessage, or None if there were no messages on the queue.

purge()
Purge all undelivered messages from the queue.

This method is a coroutine.

delete(*, if_unused=True, if_empty=True)
Delete the queue.

This method is a coroutine.

Parameters

• if_unused (bool) – If true, the queue will only be deleted if it has no consumers.

• if_empty (bool) – If true, the queue will only be deleted if it has no unacknowledged
messages.

Exchanges

class asynqp.Exchange
Manage AMQP Exchanges and publish messages.

An exchange is a ‘routing node’ to which messages can be published. When a message is published to an
exchange, the exchange determines which Queue to deliver the message to by inspecting the message’s routing
key and the exchange’s bindings. You can bind a queue to an exchange, to start receiving messages on the queue,
using Queue.bind.

Exchanges are created using Channel.declare_exchange().

name
the name of the exchange.

type
the type of the exchange (usually one of ’fanout’, ’direct’, ’topic’, or ’headers’).

publish(message, routing_key, *, mandatory=True)
Publish a message on the exchange, to be asynchronously delivered to queues.

3.1. Reference guide 11

http://docs.python.org/3/library/functions.html#callable
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool

asynqp Documentation, Release 0.4

Parameters

• message (asynqp.Message) – the message to send

• routing_key (str) – the routing key with which to publish the message

delete(*, if_unused=True)
Delete the exchange.

This method is a coroutine.

Parameters if_unused (bool) – If true, the exchange will only be deleted if it has no queues
bound to it.

Bindings

class asynqp.QueueBinding
Manage queue-exchange bindings.

Represents a binding between a Queue and an Exchange. Once a queue has been bound to an exchange,
messages published to that exchange will be delivered to the queue. The delivery may be conditional, depending
on the type of the exchange.

QueueBindings are created using Queue.bind().

queue
the Queue which was bound

exchange
the Exchange to which the queue was bound

routing_key
the routing key used for the binding

unbind(arguments=None)
Unbind the queue from the exchange.

This method is a coroutine.

Consumers

class asynqp.Consumer
A consumer asynchronously recieves messages from a queue as they arrive.

Consumers are created using Queue.consume().

tag
A string representing the consumer tag used by the server to identify this consumer.

callback
The callback function that is called when messages are delivered to the consumer. This is the function that
was passed to Queue.consume(), and should accept a single IncomingMessage argument.

cancelled
Boolean. True if the consumer has been successfully cancelled.

cancel()
Cancel the consumer and stop recieving messages.

This method is a coroutine.

12 Chapter 3. Table of contents

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine

asynqp Documentation, Release 0.4

3.1.4 Message objects

class asynqp.Message(body, *, headers=None, content_type=None, content_encoding=None, deliv-
ery_mode=None, priority=None, correlation_id=None, reply_to=None, expira-
tion=None, message_id=None, timestamp=None, type=None, user_id=None,
app_id=None)

An AMQP Basic message.

Some of the constructor parameters are ignored by the AMQP broker and are provided just for the convenience
of user applications. They are marked “for applications” in the list below.

Parameters

• body – bytes , str or dict representing the body of the message. Strings will be
encoded according to the content_encoding parameter; dicts will be converted to a string
using JSON.

• headers (dict) – a dictionary of message headers

• content_type (str) – MIME content type (defaults to ‘application/json’ if body is a
dict, or ‘application/octet-stream’ otherwise)

• content_encoding (str) – MIME encoding (defaults to ‘utf-8’)

• delivery_mode (int) – 1 for non-persistent, 2 for persistent

• priority (int) – message priority - integer between 0 and 9

• correlation_id (str) – correlation id of the message (for applications)

• reply_to (str) – reply-to address (for applications)

• expiration (str) – expiration specification (for applications)

• message_id (str) – unique id of the message (for applications)

• timestamp (datetime.datetime) – datetime of when the message was sent (default:
datetime.now())

• type (str) – message type (for applications)

• user_id (str) – ID of the user sending the message (for applications)

• app_id (str) – ID of the application sending the message (for applications)

Attributes are the same as the constructor parameters.

json()
Parse the message body as JSON.

Returns the parsed JSON.

class asynqp.IncomingMessage
A message that has been delivered to the client.

Subclass of Message.

ack()
Acknowledge the message.

reject(*, requeue=True)
Reject the message.

Parameters redeliver (bool) – if true, the broker will attempt to requeue the message and
deliver it to an alternate consumer.

3.1. Reference guide 13

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/3/library/datetime.html#datetime.datetime.now
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bool

asynqp Documentation, Release 0.4

3.1.5 Exceptions

exception asynqp.exceptions.ConnectionClosedError
Connection was closed normally by either the amqp server or the client.

exception asynqp.exceptions.ConnectionLostError
Connection was closed unexpectedly

exception asynqp.exceptions.UndeliverableMessage

exception asynqp.exceptions.Deleted

exception asynqp.exceptions.AMQPError

exception asynqp.exceptions.ResourceError

exception asynqp.exceptions.ContentTooLarge

exception asynqp.exceptions.PreconditionFailed

exception asynqp.exceptions.ConnectionForced

exception asynqp.exceptions.ChannelError

exception asynqp.exceptions.CommandInvalid

exception asynqp.exceptions.InternalError

exception asynqp.exceptions.NoConsumers

exception asynqp.exceptions.NotFound

exception asynqp.exceptions.NotImplemented

exception asynqp.exceptions.AccessRefused

exception asynqp.exceptions.NotAllowed

exception asynqp.exceptions.FrameError

exception asynqp.exceptions.UnexpectedFrame

exception asynqp.exceptions.SyntaxError

exception asynqp.exceptions.InvalidPath

exception asynqp.exceptions.ResourceLocked

3.2 Examples

3.2.1 Hello World

import asyncio
import asynqp

@asyncio.coroutine
def hello_world():

"""
Sends a 'hello world' message and then reads it from the queue.
"""
connect to the RabbitMQ broker
connection = yield from asynqp.connect('localhost', 5672, username='guest', password='guest')

14 Chapter 3. Table of contents

asynqp Documentation, Release 0.4

Open a communications channel
channel = yield from connection.open_channel()

Create a queue and an exchange on the broker
exchange = yield from channel.declare_exchange('test.exchange', 'direct')
queue = yield from channel.declare_queue('test.queue')

Bind the queue to the exchange, so the queue will get messages published to the exchange
yield from queue.bind(exchange, 'routing.key')

If you pass in a dict it will be automatically converted to JSON
msg = asynqp.Message({'hello': 'world'})
exchange.publish(msg, 'routing.key')

Synchronously get a message from the queue
received_message = yield from queue.get()
print(received_message.json()) # get JSON from incoming messages easily

Acknowledge a delivered message
received_message.ack()

yield from channel.close()
yield from connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(hello_world())

3.2.2 Reconnecting

'''
Example async consumer and publisher that will reconnect
automatically when a connection to rabbitmq is broken and
restored.
Note that no attempt is made to re-send messages that are
generated while the connection is down.
'''
import asyncio
import asynqp
from asyncio.futures import InvalidStateError

Global variables are ugly, but this is a simple example
CHANNELS = []
CONNECTION = None
CONSUMER = None
PRODUCER = None

@asyncio.coroutine
def setup_connection(loop):

connect to the RabbitMQ broker
connection = yield from asynqp.connect('localhost',

5672,
username='guest',

3.2. Examples 15

asynqp Documentation, Release 0.4

password='guest')
return connection

@asyncio.coroutine
def setup_exchange_and_queue(connection):

Open a communications channel
channel = yield from connection.open_channel()

Create a queue and an exchange on the broker
exchange = yield from channel.declare_exchange('test.exchange', 'direct')
queue = yield from channel.declare_queue('test.queue')

Save a reference to each channel so we can close it later
CHANNELS.append(channel)

Bind the queue to the exchange, so the queue will get messages published to the exchange
yield from queue.bind(exchange, 'routing.key')

return exchange, queue

@asyncio.coroutine
def setup_consumer(connection):

callback will be called each time a message is received from the queue
def callback(msg):

print('Received: {}'.format(msg.body))
msg.ack()

_, queue = yield from setup_exchange_and_queue(connection)

connect the callback to the queue
consumer = yield from queue.consume(callback)
return consumer

@asyncio.coroutine
def setup_producer(connection):

'''
The producer will live as an asyncio.Task
to stop it call Task.cancel()
'''
exchange, _ = yield from setup_exchange_and_queue(connection)

count = 0
while True:

msg = asynqp.Message('Message #{}'.format(count))
exchange.publish(msg, 'routing.key')
yield from asyncio.sleep(1)
count += 1

@asyncio.coroutine
def start(loop):

'''
Creates a connection, starts the consumer and producer.
If it fails, it will attempt to reconnect after waiting
1 second

16 Chapter 3. Table of contents

asynqp Documentation, Release 0.4

'''
global CONNECTION
global CONSUMER
global PRODUCER
try:

CONNECTION = yield from setup_connection(loop)
CONSUMER = yield from setup_consumer(CONNECTION)
PRODUCER = loop.create_task(setup_producer(CONNECTION))

Multiple exceptions may be thrown, ConnectionError, OsError
except Exception:

print('failed to connect, trying again.')
yield from asyncio.sleep(1)
loop.create_task(start(loop))

@asyncio.coroutine
def stop():

'''
Cleans up connections, channels, consumers and producers
when the connection is closed.
'''
global CHANNELS
global CONNECTION
global PRODUCER
global CONSUMER

yield from CONSUMER.cancel() # this is a coroutine
PRODUCER.cancel() # this is not

for channel in CHANNELS:
yield from channel.close()

CHANNELS = []

if CONNECTION is not None:
try:

yield from CONNECTION.close()
except InvalidStateError:

pass # could be automatically closed, so this is expected
CONNECTION = None

def connection_lost_handler(loop, context):
'''
Here we setup a custom exception handler to listen for
ConnectionErrors.

The exceptions we can catch follow this inheritance scheme

- ConnectionError - base
|
- asynqp.exceptions.ConnectionClosedError - connection closed properly

|
- asynqp.exceptions.ConnectionLostError - closed unexpectedly

'''
exception = context.get('exception')
if isinstance(exception, asynqp.exceptions.ConnectionClosedError):

print('Connection lost -- trying to reconnect')
close everything before recpnnecting

3.2. Examples 17

asynqp Documentation, Release 0.4

close_task = loop.create_task(stop())
asyncio.wait_for(close_task, None)
reconnect
loop.create_task(start(loop))

else:
default behaviour
loop.default_exception_handler(context)

loop = asyncio.get_event_loop()
loop.set_exception_handler(connection_lost_handler)
loop.create_task(start(loop))
loop.run_forever()

3.3 AMQP Procotol Support

asynqp is under development. Here is a table documenting the parts of the AMQP protocol that are currently
supported by asynqp.

Note: This library is alpha software. Even the methods marked as ‘full support’ may still have bugs. Please report
any bugs to the Github tracker.

Class Method Support API Notes
connection partial asynqp.Connection

start/start-ok full asynqp.connect
secure/secure-ok none Not required for default auth mechanism
tune/tune-ok partial Not presently user-customisable
open/open-ok full asynqp.connect
close/close-ok full asynqp.Connection.close

channel partial asynqp.Channel
open/open-ok full asynqp.Connection.open_channel
flow/flow-ok none
close/close-ok full asynqp.Channel.close

exchange partial asynqp.Exchange
declare/declare-ok partial asynqp.Channel.declare_exchange Not all parameters presently supported
delete/delete-ok full asynqp.Exchange.delete
bind/bind-ok none RabbitMQ extension
unbind/unbind-ok none RabbitMQ extension

queue partial asynqp.Queue
declare/declare-ok partial asynqp.Channel.declare_queue Not all parameters presently supported
bind/bind-ok partial asynqp.Queue.bind Not all parameters presently supported
unbind/unbind-ok full asynqp.QueueBinding.unbind
purge/purge-ok partial asynqp.Queue.purge no-wait not presently supported
delete/delete-ok partial asynqp.Queue.delete no-wait not presently supported

basic partial
qos/qos-ok full asynqp.Channel.set_qos
consume/consume-ok partial asynqp.Queue.consume Not all parameters presently supported
cancel/cancel-ok partial asynqp.Consumer.cancel no-wait not presently supported
publish partial asynqp.Exchange.publish immediate not presently supported
return full asynqp.Channel.set_return_handler

Continued on next page

18 Chapter 3. Table of contents

https://www.rabbitmq.com/protocol.html
https://github.com/benjamin-hodgson/asynqp

asynqp Documentation, Release 0.4

Table 3.1 – continued from previous page
Class Method Support API Notes

deliver full
get/get-ok/get-empty full asynqp.Queue.get
ack full asynqp.IncomingMessage.ack
reject full asynqp.IncomingMessage.reject
recover/recover-ok none
recover-async none
nack none RabbitMQ extension

tx none
select/select-ok none
commit/commit-ok none
rollback/rollback-ok none

confirm none
select/select-ok none

3.4 Protocol extensions

RabbitMQ, and other brokers, support certain extensions to the AMQP protocol. asynqp‘s support for such extensions
currently includes optional extra arguments to certain methods such as Channel.declare_queue().

The acceptable parameters for optional argument dictionaries is implementation-dependent. See‘RabbitMQ’s sup-
ported extensions <http://www.rabbitmq.com/extensions.html>‘.

• genindex

• modindex

• search

3.4. Protocol extensions 19

http://www.rabbitmq.com/extensions.html

asynqp Documentation, Release 0.4

20 Chapter 3. Table of contents

Python Module Index

a
asynqp, 7
asynqp.exceptions, 14

21

asynqp Documentation, Release 0.4

22 Python Module Index

Index

A
AccessRefused, 14
ack() (asynqp.IncomingMessage method), 13
AMQPError, 14
arguments (asynqp.Queue attribute), 10
asynqp (module), 7
asynqp.exceptions (module), 14
auto_delete (asynqp.Queue attribute), 10

B
bind() (asynqp.Queue method), 10

C
callback (asynqp.Consumer attribute), 12
cancel() (asynqp.Consumer method), 12
cancelled (asynqp.Consumer attribute), 12
Channel (class in asynqp), 8
ChannelError, 14
close() (asynqp.Channel method), 9
close() (asynqp.Connection method), 8
closed (asynqp.Connection attribute), 8
CommandInvalid, 14
connect() (in module asynqp), 7
connect_and_open_channel() (in module asynqp), 7
Connection (class in asynqp), 8
ConnectionClosedError, 14
ConnectionForced, 14
ConnectionLostError, 14
consume() (asynqp.Queue method), 10
Consumer (class in asynqp), 12
ContentTooLarge, 14

D
declare_exchange() (asynqp.Channel method), 8
declare_queue() (asynqp.Channel method), 9
delete() (asynqp.Exchange method), 12
delete() (asynqp.Queue method), 11
Deleted, 14
durable (asynqp.Queue attribute), 10

E
exchange (asynqp.QueueBinding attribute), 12
Exchange (class in asynqp), 11
exclusive (asynqp.Queue attribute), 10

F
FrameError, 14

G
get() (asynqp.Queue method), 11

I
IncomingMessage (class in asynqp), 13
InternalError, 14
InvalidPath, 14

J
json() (asynqp.Message method), 13

M
Message (class in asynqp), 13

N
name (asynqp.Exchange attribute), 11
name (asynqp.Queue attribute), 10
NoConsumers, 14
NotAllowed, 14
NotFound, 14
NotImplemented, 14

O
open_channel() (asynqp.Connection method), 8

P
PreconditionFailed, 14
protocol (asynqp.Connection attribute), 8
publish() (asynqp.Exchange method), 11
purge() (asynqp.Queue method), 11

23

asynqp Documentation, Release 0.4

Q
queue (asynqp.QueueBinding attribute), 12
Queue (class in asynqp), 10
QueueBinding (class in asynqp), 12

R
reject() (asynqp.IncomingMessage method), 13
ResourceError, 14
ResourceLocked, 14
routing_key (asynqp.QueueBinding attribute), 12

S
set_qos() (asynqp.Channel method), 9
set_return_handler() (asynqp.Channel method), 9
SyntaxError, 14

T
tag (asynqp.Consumer attribute), 12
transport (asynqp.Connection attribute), 8
type (asynqp.Exchange attribute), 11

U
unbind() (asynqp.QueueBinding method), 12
UndeliverableMessage, 14
UnexpectedFrame, 14

24 Index

	Example
	Installation
	Table of contents
	Reference guide
	Examples
	AMQP Procotol Support
	Protocol extensions

	Python Module Index

