
asynqp Documentation
Release 0.3

Benjamin Hodgson

November 13, 2014

Contents

1 Example 3

2 Installation 5

3 Table of contents 7
3.1 Reference guide . 7
3.2 AMQP Procotol Support . 13

Python Module Index 15

i

ii

asynqp Documentation, Release 0.3

An AMQP (aka RabbitMQ) client library for asyncio.

Contents 1

http://www.rabbitmq.com/
http://docs.python.org/3/library/asyncio.html#module-asyncio

asynqp Documentation, Release 0.3

2 Contents

CHAPTER 1

Example

import asyncio
import asynqp

@asyncio.coroutine
def send_and_receive():

connect to the RabbitMQ broker
connection = yield from asynqp.connect(’localhost’, 5672, username=’guest’, password=’guest’)

Open a communications channel
channel = yield from connection.open_channel()

Create a queue and an exchange on the broker
exchange = yield from channel.declare_exchange(’test.exchange’, ’direct’)
queue = yield from channel.declare_queue(’test.queue’)

Bind the queue to the exchange, so the queue will get messages published to the exchange
yield from queue.bind(exchange, ’routing.key’)

If you pass in a dict it will be automatically converted to JSON
msg = asynqp.Message({’test_body’: ’content’})
exchange.publish(msg, ’routing.key’)

Synchronously get a message from the queue
received_message = yield from queue.get()
print(received_message.json()) # get JSON from incoming messages easily

Acknowledge a delivered message
received_message.ack()

yield from connection.close()

if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(send_and_receive())

3

asynqp Documentation, Release 0.3

4 Chapter 1. Example

CHAPTER 2

Installation

asynqp has no dependencies outside of the standard library. To install the package:

pip install asynqp

5

asynqp Documentation, Release 0.3

6 Chapter 2. Installation

CHAPTER 3

Table of contents

3.1 Reference guide

3.1.1 Connecting to the AMQP broker

asynqp.connect(host=’localhost’, port=5672, username=’guest’, password=’guest’, virtual_host=’/’, *,
loop=None, **kwargs)

Connect to an AMQP server on the given host and port.

Log in to the given virtual host using the supplied credentials. This function is a coroutine.

Parameters

• host (str) – the host server to connect to.

• port (int) – the port which the AMQP server is listening on.

• username (str) – the username to authenticate with.

• password (str) – the password to authenticate with.

• virtual_host (str) – the AMQP virtual host to connect to.

Further keyword arguments are passed on to create_connection().

Returns the Connection object.

asynqp.connect_and_open_channel(host=’localhost’, port=5672, username=’guest’, pass-
word=’guest’, virtual_host=’/’, *, loop=None, **kwargs)

Connect to an AMQP server and open a channel on the connection. This function is a coroutine.

Parameters of this function are the same as connect.

Returns a tuple of (connection, channel).

Equivalent to:

connection = yield from connect(host, port, username, password, virtual_host, loop=loop, **kwargs)
channel = yield from connection.open_channel()
return connection, channel

7

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-task.html#coroutine

asynqp Documentation, Release 0.3

3.1.2 Managing Connections and Channels

Connections

class asynqp.Connection
Manage connections to AMQP brokers.

A Connection is a long-lasting mode of communication with a remote server. Each connection occupies a
single TCP connection, and may carry multiple Channels. A connection communicates with a single virtual
host on the server; virtual hosts are sandboxed and may not communicate with one another.

Applications are advised to use one connection for each AMQP peer it needs to communicate with; if you need
to perform multiple concurrent tasks you should open multiple channels.

Connections are created using asynqp.connect().

closed
a Future which is done when the handshake to close the connection has finished

open_channel()
Open a new channel on this connection.

This method is a coroutine.

Returns The new Channel object.

close()
Close the connection by handshaking with the server.

This method is a coroutine.

Channels

class asynqp.Channel
Manage AMQP Channels.

A Channel is a ‘virtual connection’ over which messages are sent and received. Several independent channels
can be multiplexed over the same Connection, so peers can perform several tasks concurrently while using a
single socket.

Channels are created using Connection.open_channel().

declare_exchange(name, type, *, durable=True, auto_delete=False, internal=False)
Declare an Exchange on the broker. If the exchange does not exist, it will be created.

This method is a coroutine.

Parameters

• name (str) – the name of the exchange.

• type (str) – the type of the exchange (usually one of ’fanout’, ’direct’, ’topic’,
or ’headers’)

• durable (bool) – If true, the exchange will be re-created when the server restarts.

• auto_delete (bool) – If true, the exchange will be deleted when the last queue is un-bound
from it.

• internal (bool) – If true, the exchange cannot be published to directly; it can only be bound
to other exchanges.

Returns the new Exchange object.

8 Chapter 3. Table of contents

http://docs.python.org/3/library/asyncio-task.html#asyncio.Future
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool

asynqp Documentation, Release 0.3

declare_queue(name=’‘, *, durable=True, exclusive=False, auto_delete=False)
Declare a queue on the broker. If the queue does not exist, it will be created.

This method is a coroutine.

Parameters

• name (str) – the name of the queue. Supplying a name of ‘’ will create a queue with a
unique name of the server’s choosing.

• durable (bool) – If true, the queue will be re-created when the server restarts.

• exclusive (bool) – If true, the queue can only be accessed by the current connection, and
will be deleted when the connection is closed.

• auto_delete (bool) – If true, the queue will be deleted when the last consumer is cancelled.
If there were never any conusmers, the queue won’t be deleted.

Returns The new Queue object.

close()
Close the channel by handshaking with the server.

This method is a coroutine.

set_qos(prefetch_size=0, prefetch_count=0, apply_globally=False)
Specify quality of service by requesting that messages be pre-fetched from the server. Pre-fetching means
that the server will deliver messages to the client while the client is still processing unacknowledged
messages.

This method is a coroutine.

Parameters

• prefetch_size (int) – Specifies a prefetch window in bytes. Messages smaller than this will
be sent from the server in advance. This value may be set to 0, which means “no specific
limit”.

• prefetch_count (int) – Specifies a prefetch window in terms of whole messages.

• apply_globally (bool) – If true, apply these QoS settings on a global level. The meaning
of this is implementation-dependent. From the RabbitMQ documentation:

RabbitMQ has reinterpreted this field. The original specification said: “By default
the QoS settings apply to the current channel only. If this field is set, they are applied
to the entire connection.” Instead, RabbitMQ takes global=false to mean that the
QoS settings should apply per-consumer (for new consumers on the channel; existing
ones being unaffected) and global=true to mean that the QoS settings should apply
per-channel.

set_return_handler(handler)
Set handler as the callback function for undeliverable messages that were returned by the server.

By default, an exception is raised, which will be handled by the event loop’s exception handler (see
BaseEventLoop.set_exception_handler). If handler is None, this default behaviour is set.

Parameters handler (callable) – A function to be called when a message is returned. The
callback will be passed the undelivered message.

3.1. Reference guide 9

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#bool
https://www.rabbitmq.com/amqp-0-9-1-reference.html#basic.qos.global
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.set_exception_handler
http://docs.python.org/3/library/functions.html#callable

asynqp Documentation, Release 0.3

3.1.3 Sending and receiving messages with Queues and Exchanges

Queues

class asynqp.Queue
Manage AMQP Queues and consume messages.

A queue is a collection of messages, to which new messages can be delivered via an Exchange, and from
which messages can be consumed by an application.

Queues are created using Channel.declare_queue().

name
the name of the queue

durable
if True, the queue will be re-created when the broker restarts

exclusive
if True, the queue is only accessible over one channel

auto_delete
if True, the queue will be deleted when its last consumer is removed

bind(exchange, routing_key)
Bind a queue to an exchange, with the supplied routing key.

This action ‘subscribes’ the queue to the routing key; the precise meaning of this varies with the exchange
type.

This method is a coroutine.

Parameters

• exchange (asynqp.Exchange) – the Exchange to bind to

• routing_key (str) – the routing key under which to bind

Returns The new QueueBinding object

consume(callback, *, no_local=False, no_ack=False, exclusive=False)
Start a consumer on the queue. Messages will be delivered asynchronously to the consumer. The callback
function will be called whenever a new message arrives on the queue.

This method is a coroutine.

Parameters

• callback (callable) – a callback to be called when a message is delivered. The callback
must accept a single argument (an instance of IncomingMessage).

• no_local (bool) – If true, the server will not deliver messages that were published by this
connection.

• no_ack (bool) – If true, messages delivered to the consumer don’t require acknowledge-
ment.

• exclusive (bool) – If true, only this consumer can access the queue.

Returns The newly created Consumer object.

get(*, no_ack=False)
Synchronously get a message from the queue.

This method is a coroutine.

10 Chapter 3. Table of contents

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#callable
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/asyncio-task.html#coroutine

asynqp Documentation, Release 0.3

Parameters no_ack (bool) – if true, the broker does not require acknowledgement of receipt of
the message.

Returns an IncomingMessage, or None if there were no messages on the queue.

purge()
Purge all undelivered messages from the queue.

This method is a coroutine.

delete(*, if_unused=True, if_empty=True)
Delete the queue.

This method is a coroutine.

Parameters

• if_unused (bool) – If true, the queue will only be deleted if it has no consumers.

• if_empty (bool) – If true, the queue will only be deleted if it has no unacknowledged
messages.

Exchanges

class asynqp.Exchange
Manage AMQP Exchanges and publish messages.

An exchange is a ‘routing node’ to which messages can be published. When a message is published to an
exchange, the exchange determines which Queue to deliver the message to by inspecting the message’s routing
key and the exchange’s bindings. You can bind a queue to an exchange, to start receiving messages on the queue,
using Queue.bind.

Exchanges are created using Channel.declare_exchange().

name
the name of the exchange.

type
the type of the exchange (usually one of ’fanout’, ’direct’, ’topic’, or ’headers’).

publish(message, routing_key, *, mandatory=True)
Publish a message on the exchange, to be asynchronously delivered to queues.

Parameters

• message (asynqp.Message) – the message to send

• routing_key (str) – the routing key with which to publish the message

delete(*, if_unused=True)
Delete the exchange.

This method is a coroutine.

Parameters if_unused (bool) – If true, the exchange will only be deleted if it has no queues
bound to it.

Bindings

class asynqp.QueueBinding
Manage queue-exchange bindings.

3.1. Reference guide 11

http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/functions.html#bool

asynqp Documentation, Release 0.3

Represents a binding between a Queue and an Exchange. Once a queue has been bound to an exchange,
messages published to that exchange will be delivered to the queue. The delivery may be conditional, depending
on the type of the exchange.

QueueBindings are created using Queue.bind().

queue
the Queue which was bound

exchange
the Exchange to which the queue was bound

routing_key
the routing key used for the binding

unbind()
Unbind the queue from the exchange.

This method is a coroutine.

Consumers

class asynqp.Consumer
A consumer asynchronously recieves messages from a queue as they arrive.

Consumers are created using Queue.consume().

tag
A string representing the consumer tag used by the server to identify this consumer.

callback
The callback function that is called when messages are delivered to the consumer. This is the function that
was passed to Queue.consume(), and should accept a single IncomingMessage argument.

cancelled
Boolean. True if the consumer has been successfully cancelled.

cancel()
Cancel the consumer and stop recieving messages.

This method is a coroutine.

3.1.4 Message objects

class asynqp.Message(body, *, headers=None, content_type=None, content_encoding=None, deliv-
ery_mode=None, priority=None, correlation_id=None, reply_to=None, expira-
tion=None, message_id=None, timestamp=None, type=None, user_id=None,
app_id=None)

An AMQP Basic message.

Some of the constructor parameters are ignored by the AMQP broker and are provided just for the convenience
of user applications. They are marked “for applications” in the list below.

Parameters

• body – bytes , str or dict representing the body of the message. Strings will be en-
coded according to the content_encoding parameter; dicts will be converted to a string using
JSON.

• headers (dict) – a dictionary of message headers

12 Chapter 3. Table of contents

http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/asyncio-task.html#coroutine
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#dict
http://docs.python.org/3/library/stdtypes.html#dict

asynqp Documentation, Release 0.3

• content_type (str) – MIME content type

• content_encoding (str) – MIME encoding

• delivery_mode (int) – 1 for non-persistent, 2 for persistent

• priority (int) – message priority - integer between 0 and 9

• correlation_id (str) – correlation id of the message (for applications)

• reply_to (str) – reply-to address (for applications)

• expiration (str) – expiration specification (for applications)

• message_id (str) – unique id of the message (for applications)

• timestamp (datetime.datetime) – datetime of when the message was sent (default:
datetime.now())

• type (str) – message type (for applications)

• user_id (str) – ID of the user sending the message (for applications)

• app_id (str) – ID of the application sending the message (for applications)

Attributes are the same as the constructor parameters.

json()
Parse the message body as JSON.

Returns the parsed JSON.

class asynqp.IncomingMessage
A message that has been delivered to the client.

Subclass of Message.

ack()
Acknowledge the message.

reject(*, requeue=True)
Reject the message.

Parameters redeliver (bool) – if true, the broker will attempt to requeue the message and deliver
it to an alternate consumer.

3.2 AMQP Procotol Support

asynqp is under development. Here is a table documenting the parts of the AMQP protocol that are currently
supported by asynqp.

Note: This library is alpha software. Even the methods marked as ‘full support’ may still have bugs. Please report
any bugs to the Github tracker.

Class Method Support API Notes
connection partial asynqp.Connection

start/start-ok full asynqp.connect
secure/secure-ok none Not required for default auth mechanism
tune/tune-ok partial Not presently user-customisable
open/open-ok full asynqp.connect

Continued on next page

3.2. AMQP Procotol Support 13

http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/3/library/datetime.html#datetime.datetime
http://docs.python.org/3/library/datetime.html#datetime.datetime.now
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bool
https://www.rabbitmq.com/protocol.html
https://github.com/benjamin-hodgson/asynqp

asynqp Documentation, Release 0.3

Table 3.1 – continued from previous page
Class Method Support API Notes

close/close-ok full asynqp.Connection.close
channel partial asynqp.Channel

open/open-ok full asynqp.Connection.open_channel
flow/flow-ok none
close/close-ok full asynqp.Channel.close

exchange partial asynqp.Exchange
declare/declare-ok partial asynqp.Channel.declare_exchange Not all parameters presently supported
delete/delete-ok full asynqp.Exchange.delete
bind/bind-ok none RabbitMQ extension
unbind/unbind-ok none RabbitMQ extension

queue partial asynqp.Queue
declare/declare-ok partial asynqp.Channel.declare_queue Not all parameters presently supported
bind/bind-ok partial asynqp.Queue.bind Not all parameters presently supported
unbind/unbind-ok full asynqp.QueueBinding.unbind
purge/purge-ok partial asynqp.Queue.purge no-wait not presently supported
delete/delete-ok partial asynqp.Queue.delete no-wait not presently supported

basic partial
qos/qos-ok full asynqp.Channel.set_qos
consume/consume-ok partial asynqp.Queue.consume Not all parameters presently supported
cancel/cancel-ok partial asynqp.Consumer.cancel no-wait not presently supported
publish partial asynqp.Exchange.publish immediate not presently supported
return full asynqp.Channel.set_return_handler
deliver full
get/get-ok/get-empty full asynqp.Queue.get
ack full asynqp.IncomingMessage.ack
reject full asynqp.IncomingMessage.reject
recover/recover-ok none
recover-async none
nack none RabbitMQ extension

tx none
select/select-ok none
commit/commit-ok none
rollback/rollback-ok none

confirm none
select/select-ok none

• genindex

• modindex

• search

14 Chapter 3. Table of contents

Python Module Index

a
asynqp, 7

15

asynqp Documentation, Release 0.3

16 Python Module Index

Index

A
ack() (asynqp.IncomingMessage method), 13
asynqp (module), 7
auto_delete (asynqp.Queue attribute), 10

B
bind() (asynqp.Queue method), 10

C
callback (asynqp.Consumer attribute), 12
cancel() (asynqp.Consumer method), 12
cancelled (asynqp.Consumer attribute), 12
Channel (class in asynqp), 8
close() (asynqp.Channel method), 9
close() (asynqp.Connection method), 8
closed (asynqp.Connection attribute), 8
connect() (in module asynqp), 7
connect_and_open_channel() (in module asynqp), 7
Connection (class in asynqp), 8
consume() (asynqp.Queue method), 10
Consumer (class in asynqp), 12

D
declare_exchange() (asynqp.Channel method), 8
declare_queue() (asynqp.Channel method), 8
delete() (asynqp.Exchange method), 11
delete() (asynqp.Queue method), 11
durable (asynqp.Queue attribute), 10

E
exchange (asynqp.QueueBinding attribute), 12
Exchange (class in asynqp), 11
exclusive (asynqp.Queue attribute), 10

G
get() (asynqp.Queue method), 10

I
IncomingMessage (class in asynqp), 13

J
json() (asynqp.Message method), 13

M
Message (class in asynqp), 12

N
name (asynqp.Exchange attribute), 11
name (asynqp.Queue attribute), 10

O
open_channel() (asynqp.Connection method), 8

P
publish() (asynqp.Exchange method), 11
purge() (asynqp.Queue method), 11

Q
queue (asynqp.QueueBinding attribute), 12
Queue (class in asynqp), 10
QueueBinding (class in asynqp), 11

R
reject() (asynqp.IncomingMessage method), 13
routing_key (asynqp.QueueBinding attribute), 12

S
set_qos() (asynqp.Channel method), 9
set_return_handler() (asynqp.Channel method), 9

T
tag (asynqp.Consumer attribute), 12
type (asynqp.Exchange attribute), 11

U
unbind() (asynqp.QueueBinding method), 12

17

	Example
	Installation
	Table of contents
	Reference guide
	AMQP Procotol Support

	Python Module Index

